In [1]:
%matplotlib inline
import mpld3
mpld3.enable_notebook()
import matplotlib.pyplot as plt
In [2]:
# import ifg.shis.rdr.valid as val
from pyfbf import Workspace
import numpy as np
W = Workspace('rdr20170321T183218end20170322T013232sdr20170327T201013')
In [3]:
pitch,roll,segments,smp,sequences = W['Pitch'][:], W['Roll'][:], W['segments'][:], W['sceneMirrorPosition'][:], W['intactMirrorSequences'][:]
In [7]:
gudrex = np.argwhere(smp==ord('E'))

fig = plt.figure(figsize=(15,10))
ax = fig.add_subplot(111, axisbg='#EEEEEE')
ax.grid(color='white', linestyle='solid')
# ax.plot(seg, color='blue')
ax.plot(gudrex, segments[gudrex], color='green')
# ax.legend(['test segmentize', 'original segments'])
ax.set_title('segments.int4 test for E views sh170321')
Out[7]:
<matplotlib.text.Text at 0x10fd70f50>
In [5]:
' '.join(str(x) for x in sorted(set(segments)))
Out[5]:
'-31 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 43'
In [6]:
fig = plt.figure(figsize=(15,10))
ax = fig.add_subplot(111, axisbg='#EEEEEE')
ax.grid(color='white', linestyle='solid')
ax.plot(roll, alpha=0.7, color='blue', linewidth=0.5)
ax.plot(pitch, alpha=0.7, color='green', linewidth=0.5)
ax.legend(['Roll', 'Pitch'])
# ax.set_title()
Out[6]:
<matplotlib.legend.Legend at 0x10fce1f10>
In [8]:
s,e = 10000,25000

fig = plt.figure(figsize=(15,10))
ax = fig.add_subplot(111, axisbg='#EEEEEE')
ax.grid(color='white', linestyle='solid')
ax.plot(roll[s:e], alpha=0.7, linewidth=0.5, color='blue')
ax.plot(roll[s:e], alpha=0.7, linewidth=0.5, color='green')
ax.plot(np.sign(segments[s:e]) * 20, linewidth=0.5, color='red')
# plot(np.require(ok[s:e], dtype=np.int32) * 25)
ax.legend(['Roll', 'Pitch', 'segments sign'])
ax.set_title('Attitude excerpt sh170321')
ax.set_xlabel('record offset')
ax.set_ylabel('degrees')
Out[8]:
<matplotlib.text.Text at 0x10fc985d0>
In [9]:
unroll, turnroll, flatroll, calroll = np.array(roll), np.array(roll), np.array(roll), np.array(roll)
eview = smp==ord('E')
unroll[(segments!=0) | ~eview] = np.NAN
turnroll[(segments>=0) | ~eview] = np.NAN
flatroll[(segments<=0) | ~eview] = np.NAN
calroll[eview] = np.NAN

fig = plt.figure(figsize=(15,15))
ax = fig.add_subplot(111, axisbg='#EEEEEE')
ax.grid(color='white', linestyle='solid') 
ax.plot(calroll, alpha=0.7, linewidth=0.5, color='purple')
ax.plot(unroll, alpha=0.9, linewidth=0.5, color='red')
ax.plot(flatroll, alpha=0.9, linewidth=0.5, color='blue')
ax.plot(turnroll, alpha=0.9, linewidth=0.5, color='green')

ax.set_title('Roll for Segment-Categorized Views')
ax.legend(['not earth', 'segments==0', 'segments>0', 'segments<0'])
Out[9]:
<matplotlib.legend.Legend at 0x110492ed0>
In [10]:
unpitch, turnpitch, flatpitch, calpitch = np.array(pitch), np.array(pitch), np.array(pitch), np.array(pitch)
eview = smp==ord('E')
unpitch[(segments!=0) | ~eview] = np.NAN
turnpitch[(segments>=0) | ~eview] = np.NAN
flatpitch[(segments<=0) | ~eview] = np.NAN
calpitch[eview] = np.NAN

fig = plt.figure(figsize=(15,15))
ax = fig.add_subplot(111, axisbg='#EEEEEE')
ax.grid(color='white', linestyle='solid')
ax.plot(calpitch, alpha=0.6, linewidth=0.5, color='purple')
ax.plot(unpitch, alpha=0.9, linewidth=0.5, color='red')
ax.plot(flatpitch, alpha=0.9, linewidth=0.5, color='blue')
ax.plot(turnpitch, alpha=0.9, linewidth=0.5, color='green')

ax.set_title('pitch for Segment-Categorized Views')
ax.legend(['not earth', 'segments==0', 'segments>0', 'segments<0'])
Out[10]:
<matplotlib.legend.Legend at 0x110982e90>
In [11]:
lat, lon = W['instrumentLatitude'][:], W['instrumentLongitude'][:]

unlat, turnlat, flatlat, callat = np.array(lat), np.array(lat), np.array(lat), np.array(lat)
eview = smp==ord('E')
unlat[(segments!=0) | (lat==0) | ~eview] = np.NAN
turnlat[(segments>=0) | (lat==0) | ~eview] = np.NAN
flatlat[(segments<=0) | (lat==0) | ~eview] = np.NAN
callat[eview | (lon==0)] = np.NAN

unlon, turnlon, flatlon, callon = np.array(lon), np.array(lon), np.array(lon), np.array(lon)
eview = smp==ord('E')
unlon[(segments!=0) | (lon==0) | ~eview] = np.NAN
turnlon[(segments>=0) | (lon==0) | ~eview] = np.NAN
flatlon[(segments<=0) | (lon==0) | ~eview] = np.NAN
callon[eview | (lon==0)] = np.NAN

fig = plt.figure(figsize=(15,15))
ax = fig.add_subplot(111, axisbg='#EEEEEE')
ax.grid(color='white', linestyle='solid')
ax.plot(callon, callat, alpha=0.6, linewidth=0.5, color='purple')
ax.plot(unlon, unlat, alpha=0.9, linewidth=0.5, color='red')
ax.plot(flatlon, flatlat, alpha=0.9, linewidth=0.5, color='blue')
ax.plot(turnlon, turnlat, alpha=0.9, linewidth=0.5, color='green')

ax.set_title('flight track for Segment-Categorized Views')
ax.legend(['not earth', 'segments==0', 'segments>0', 'segments<0'])
Out[11]:
<matplotlib.legend.Legend at 0x11126f7d0>
In [12]:
import netCDF4 as nc4
nc = nc4.Dataset('rdr20170321T183218end20170322T013232sdr20170327T201013/dist/goes16_SHIS_20170321_183218_20170322_013232_sdr20170327T201013_rad.nc')
lat, lon, segments, eview = nc.variables['instrumentLatitude'][:], nc.variables['instrumentLongitude'][:], nc.variables['segments'][:], True
In [13]:
unlat, turnlat, flatlat, callat = np.array(lat), np.array(lat), np.array(lat), np.array(lat)
unlat[(segments!=0) | (lat==0)] = np.NAN
turnlat[(segments>=0) | (lat==0)] = np.NAN
flatlat[(segments<=0) | (lat==0)] = np.NAN

unlon, turnlon, flatlon, callon = np.array(lon), np.array(lon), np.array(lon), np.array(lon)
unlon[(segments!=0) | (lon==0)] = np.NAN
turnlon[(segments>=0) | (lon==0)] = np.NAN
flatlon[(segments<=0) | (lon==0)] = np.NAN

fig = plt.figure(figsize=(15,15))
ax = fig.add_subplot(111, axisbg='#EEEEEE')
ax.grid(color='white', linestyle='solid')
ax.plot(unlon, unlat, alpha=0.9, linewidth=0.5, color='red')
ax.plot(flatlon, flatlat, alpha=0.9, linewidth=0.5, color='blue')
ax.plot(turnlon, turnlat, alpha=0.9, linewidth=0.5, color='green')

ax.set_title('NetCDF flight track for Segment-Categorized Views')
ax.legend(['segments==0', 'segments>0', 'segments<0'])
Out[13]:
<matplotlib.legend.Legend at 0x118ed6190>
In [14]:
' '.join(str(x) for x in sorted(set(segments)))
Out[14]:
'-31 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 43'
In [15]:
fig = plt.figure(figsize=(15,15))
ax = fig.add_subplot(111, axisbg='#EEEEEE')
ax.grid(color='white', linestyle='solid')
ax.plot(segments)
Out[15]:
[<matplotlib.lines.Line2D at 0x1151fd950>]
In [16]:
s,e = 3500, 10000

fig = plt.figure(figsize=(15,15))
ax = fig.add_subplot(111, axisbg='#EEEEEE')
ax.grid(color='white', linestyle='solid')

ax.plot(unlon[s:e], unlat[s:e], alpha=0.6, linewidth=10, color='red')
ax.plot(flatlon[s:e], flatlat[s:e], alpha=0.6, linewidth=10, color='blue')
ax.plot(turnlon[s:e], turnlat[s:e], alpha=0.6, linewidth=10, color='green')

fovlat, fovlon = nc['Latitude'][:], nc['Longitude'][:]

funlat, fturnlat, fflatlat, fcallat = np.array(fovlat), np.array(fovlat), np.array(fovlat), np.array(fovlat)
funlat[(segments!=0) | (lat==0)] = np.NAN
fturnlat[(segments>=0) | (lat==0)] = np.NAN
fflatlat[(segments<=0) | (lat==0)] = np.NAN

funlon, fturnlon, fflatlon, fcallon = np.array(fovlon), np.array(fovlon), np.array(fovlon), np.array(fovlon)
funlon[(segments!=0) | (lon==0)] = np.NAN
fturnlon[(segments>=0) | (lon==0)] = np.NAN
fflatlon[(segments<=0) | (lon==0)] = np.NAN

ax.plot(funlon[s:e], funlat[s:e], '.', alpha=0.9, linewidth=0.5, color='red')
ax.plot(fflatlon[s:e], fflatlat[s:e], '.', alpha=0.9, linewidth=0.5, color='blue')
ax.plot(fturnlon[s:e], fturnlat[s:e], '.', alpha=0.9, linewidth=0.5, color='green')

ax.set_title('FOV track for Segment-Categorized Views')
ax.legend(['not earth', 'segments==0', 'segments>0', 'segments<0'])
Out[16]:
<matplotlib.legend.Legend at 0x114fcda50>
In [ ]: