import glances
import numpy as np
import multiprocessing as mp
CORES=40
# https://docs.google.com/spreadsheets/d/1rg5P26ArIJVSojHipEJ4Wi7-mhgeA1bbFGqYoWAsVP4/edit#gid=0
# convdate %Y%m%d %Y/%j 20160117 20160119 20160218 20160224 20160318 20160324 20160411 20160414 20160417 20160419 20160505 20160506 20160509 20160510 20160511 20160512 20160513 20160517 20160615 20160913 20160920 20160921 20160922 20160929 20161024 20161004 20161210
anomstr = """
2016/017
2016/019
2016/049
2016/055
2016/078
2016/084
2016/102
2016/105
2016/108
2016/110
2016/126
2016/127
2016/130
2016/131
2016/132
2016/133
2016/134
2016/138
2016/167
2016/257
2016/264
2016/265
2016/266
2016/273
2016/298
2016/278
2016/345
"""
anoms = set(x.strip() for x in anomstr.split())
anoms
{'2016/017', '2016/019', '2016/049', '2016/055', '2016/078', '2016/084', '2016/102', '2016/105', '2016/108', '2016/110', '2016/126', '2016/127', '2016/130', '2016/131', '2016/132', '2016/133', '2016/134', '2016/138', '2016/167', '2016/257', '2016/264', '2016/265', '2016/266', '2016/273', '2016/278', '2016/298', '2016/345'}
inputs = tuple([x.strip() for x in open('input.txt').readlines()])
# inputs = tuple(x for x in inputs if x not in anoms) # ditch known anomaly days, optionally
inputs[:4]
('2016/001', '2016/002', '2016/003', '2016/004')
import os
join = os.path.join
from glob import glob
import re
RE_gXXX = re.compile('g(\d\d\d).txt')
for dur in inputs:
for fn in glob(join(dur,'gl*txt')):
gxxx, = RE_gXXX.findall(fn)
yyyy,jjj = dur.split('/')
nn = join('all', '%sj%sg%s' % (yyyy,jjj,gxxx))
try:
if not os.path.exists(nn):
os.symlink(join('..', fn), nn)
except:
print("%s ???" % fn)
def load_glances(dur):
try:
pfx = dur.replace('/','j')
g = glances.dataframe_from_glances(os.path.join('all', pfx + '*'))
except:
g = None
print("oops " + pfx)
return (pfx, g)
import pandas as pd
pool = mp.Pool(CORES)
dfs = dict(pool.map(load_glances, inputs))
pool.close()
pool.join()
oops 2017j001 oops 2017j003 oops 2017j002 oops 2016j032 oops 2016j008
df = pd.concat(x for x in dfs.values() if x is not None)
df.shape
(7200, 2200)
def sos(jxxx):
rads = ['rad_lw', 'rad_mw', 'rad_sw']
geos = ['lat', 'lon', 'sat_range']
flgs = [] # 'geo_qual', '11b_qual']
zult = {}
for rad in rads:
zult[rad] = (jxxx.ix[:][rad,'max_diff'] > 1e-4).nonzero()
for geo in geos:
zult[geo] = (jxxx.ix[:][geo,'max_diff'] > 0.000025).nonzero() # about 1km max
for flg in flgs:
zult[flg] = jxxx.ix[:][flg,'max_diff'].nonzero()
return zult
q = sos(df)
q
{'lat': (array([5563, 5564, 5565, 5566, 5567, 5568, 5569, 5570, 5571, 5572, 5608]),), 'lon': (array([ 482, 809, 981, 1048, 1265, 1593, 2885, 3212, 4695, 4826, 4978, 5046, 5130, 5524, 5563, 5564, 5565, 5566, 5567, 5568, 5569, 5570, 5571, 5572, 5608, 5807, 5875, 6987, 7139]),), 'rad_lw': (array([ 43, 2413, 2414, 3876, 3877, 3880, 3881, 3891, 3892, 3893, 4825, 4826, 4858, 4859, 5608, 5609]),), 'rad_mw': (array([ 358, 359, 3876, 3877, 3880, 3881, 3891, 3892, 3893, 4825, 4826, 4858, 4859, 5608, 5609]),), 'rad_sw': (array([ 358, 359, 2361, 3876, 3877, 3891, 3892, 3893, 4825, 4826, 4858, 4859, 5608, 5609]),), 'sat_range': (array([ 0, 1, 2, ..., 7197, 7198, 7199]),)}
df.ix['2016j004g119'][:,'max_diff']
asc_flag 0 for_num 0 fov_num 0 geo_qual 0 instrument_state 0 l1b_qual 0 land_frac 0 lat 1.90735e-06 lat_bnds 3.8147e-06 lat_geoid 1.90735e-06 lon 1.52588e-05 lon_bnds 1.52588e-05 lon_geoid 1.52588e-05 nedn_lw 0 nedn_mw 0 nedn_sw 0 obs_time_tai 0 obs_time_utc 0 rad_lw 0 rad_mw 0.00790787 rad_sw 0.000557303 sat_alt 0 sat_att 4.74683e-08 sat_azi 3.05176e-05 sat_pos 0 sat_range 0.125 sat_vel 0 sat_zen 3.8147e-06 scan_mid_time 0 scan_sweep_dir 0 sol_azi 1.52588e-05 sol_zen 1.52588e-05 subsat_lat 0 subsat_lon 0 sun_glint_dist NaN sun_glint_lat NaN sun_glint_lon NaN surf_alt 0 surf_alt_sdev 0 view_ang 3.8147e-06 Name: 2016j004g119, dtype: object
[max(df.ix[:][lms,'max_diff']) for lms in ('rad_lw', 'rad_mw', 'rad_sw')]
[3232.9400000000001, 0.039579499999999997, 0.0022378900000000002]
# rough numerical epsilons for 6.5 digits
follo = [(df.ix[:][lms,'max_diff'] > v).nonzero() for (lms,v) in zip(('rad_lw', 'rad_mw', 'rad_sw'), (0.0001, 0.0001, 0.00001))]
follo
[(array([ 43, 2413, 2414, 3876, 3877, 3880, 3881, 3891, 3892, 3893, 4825, 4826, 4858, 4859, 5608, 5609]),), (array([ 358, 359, 3876, 3877, 3880, 3881, 3891, 3892, 3893, 4825, 4826, 4858, 4859, 5608, 5609]),), (array([ 358, 359, 2361, 3876, 3877, 3891, 3892, 3893, 4825, 4826, 4858, 4859, 5608, 5609]),)]
wtf = [(df.ix[:][lms,'max_diff'] > v).nonzero() for (lms,v) in zip(('rad_lw', 'rad_mw', 'rad_sw'), (0.001, 0.001, 0.0001))]
wtf
[(array([ 43, 2413, 2414, 3876, 3877, 3880, 3881, 3891, 3892, 3893, 4825, 4826, 4858, 4859, 5608, 5609]),), (array([ 358, 359, 3876, 3877, 3880, 3881, 3891, 3892, 3893, 4825, 4826, 4858, 4859, 5608, 5609]),), (array([ 358, 359, 2361, 3876, 3877, 3891, 3892, 3893, 4825, 4826, 4858, 4859, 5608, 5609]),)]
# check r-squared correlation
rsq = [(df.ix[:][lms,'r-squared correlation'] < v).nonzero() for (lms,v) in zip(('rad_lw', 'rad_mw', 'rad_sw'), (0.9999, 0.9999, 0.9999))]
rsq
[(array([43]),), (array([], dtype=int64),), (array([], dtype=int64),)]
df.rad_lw[df.rad_lw['max_diff'] > 0.0001].transpose()
2016j005g044 | 2016j024g014 | 2016j024g015 | 2016j028g037 | 2016j028g038 | 2016j028g041 | 2016j028g042 | 2016j028g052 | 2016j028g053 | 2016j028g054 | 2016j010g026 | 2016j010g027 | 2016j010g059 | 2016j010g060 | 2016j017g089 | 2016j017g090 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a_finite_count | 8711550 | 8711550 | 8711550 | 3291030 | 8711550 | 8711550 | 8711550 | 8517960 | 2071413 | 8711550 | 8130780 | 8711550 | 8517960 | 8492148 | 1742310 | 8711550 |
a_finite_fraction | 1 | 1 | 1 | 0.3777778 | 1 | 1 | 1 | 0.9777778 | 0.2377778 | 1 | 0.9333333 | 1 | 0.9777778 | 0.9748148 | 0.2 | 1 |
a_missing_count | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
a_missing_fraction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
a_missing_value | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 |
a_nan_count | 0 | 0 | 0 | 5420520 | 0 | 0 | 0 | 193590 | 6640137 | 0 | 580770 | 0 | 193590 | 219402 | 6969240 | 0 |
a_nan_fraction | 0 | 0 | 0 | 0.6222222 | 0 | 0 | 0 | 0.02222222 | 0.7622222 | 0 | 0.06666667 | 0 | 0.02222222 | 0.02518519 | 0.8 | 0 |
b_finite_count | 8711550 | 8711550 | 8711550 | 8711550 | 8711550 | 8711550 | 8711550 | 8711550 | 8711550 | 8711550 | 8711550 | 8711550 | 8711550 | 8711550 | 1742310 | 8711550 |
b_finite_fraction | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.2 | 1 |
b_missing_count | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
b_missing_fraction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
b_missing_value | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 |
b_nan_count | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6969240 | 0 |
b_nan_fraction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0 |
common_finite_count | 8711550 | 8711550 | 8711550 | 3291030 | 8711550 | 8711550 | 8711550 | 8517960 | 2071413 | 8711550 | 8130780 | 8711550 | 8517960 | 8492148 | 1742310 | 8711550 |
common_finite_fraction | 1 | 1 | 1 | 0.3777778 | 1 | 1 | 1 | 0.9777778 | 0.2377778 | 1 | 0.9333333 | 1 | 0.9777778 | 0.9748148 | 0.2 | 1 |
common_missing_count | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
common_missing_fraction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
common_nan_count | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6969240 | 0 |
common_nan_fraction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0 |
correlation | 0.991963 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
diff_outside_epsilon_count | 717 | 128615 | 182486 | 2516149 | 2709178 | 408106 | 214960 | 2709346 | 2071183 | 580544 | 2708880 | 2708884 | 2708645 | 2683074 | 1741437 | 967346 |
diff_outside_epsilon_fraction | 8.230453e-05 | 0.01476373 | 0.02094759 | 0.7645476 | 0.3109869 | 0.04684654 | 0.02467529 | 0.3180745 | 0.999889 | 0.06664072 | 0.3331636 | 0.3109532 | 0.3179922 | 0.3159476 | 0.9994989 | 0.1110418 |
epsilon | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
epsilon_percent | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
finite_in_only_one_count | 0 | 0 | 0 | 5420520 | 0 | 0 | 0 | 193590 | 6640137 | 0 | 580770 | 0 | 193590 | 219402 | 0 | 0 |
finite_in_only_one_fraction | 0 | 0 | 0 | 0.6222222 | 0 | 0 | 0 | 0.02222222 | 0.7622222 | 0 | 0.06666667 | 0 | 0.02222222 | 0.02518519 | 0 | 0 |
max_a | 105.667 | 124.291 | 98.9222 | 83.5734 | 103.868 | 134.126 | 135.081 | 119.413 | 81.661 | 98.9868 | 87.5305 | 100.407 | 106.978 | 95.4691 | 76.8047 | 88.6718 |
max_b | 484.477 | 124.291 | 98.9222 | 88.4748 | 103.868 | 134.126 | 135.081 | 119.413 | 82.6339 | 98.9868 | 87.5305 | 100.407 | 106.978 | 95.4691 | 76.815 | 88.6718 |
max_delta | 454.943 | 0.0278664 | 0.0301857 | 0.236595 | 0.237318 | 0.0227547 | 0.0240746 | 0.297855 | 0.271437 | 0.0910816 | 0.0741272 | 0.0827713 | 0.0680733 | 0.0640831 | 0.0713577 | 0.0459404 |
max_diff | 3232.94 | 0.0278664 | 0.0301857 | 0.24143 | 0.273169 | 0.0326271 | 0.0330849 | 0.308235 | 0.298214 | 0.117607 | 0.0980377 | 0.0887527 | 0.0680733 | 0.0640831 | 0.0713577 | 0.0459404 |
mean_a | 47.5832 | 63.0505 | 45.3816 | 37.3533 | 46.9861 | 83.6369 | 57.076 | 50.6066 | 30.9578 | 43.2353 | 40.6948 | 43.2834 | 45.8045 | 39.8572 | 34.578 | 39.3302 |
mean_b | 47.5847 | 63.0505 | 45.3816 | 40.9314 | 46.9863 | 83.6369 | 57.076 | 50.5036 | 36.8193 | 43.2352 | 40.7499 | 43.2833 | 45.6442 | 39.8194 | 34.5776 | 39.3301 |
mean_delta | 0.00154281 | 8.82095e-07 | 8.02439e-07 | 0.00263809 | 0.000237034 | 5.09241e-06 | -7.42119e-06 | 5.69766e-05 | -0.00513598 | -8.843e-05 | 0.00010352 | -5.44912e-05 | 0.000166402 | -0.000201952 | -0.00037236 | -4.12139e-05 |
mean_diff | 0.0110953 | 1.6091e-05 | 2.53539e-05 | 0.00512564 | 0.00189995 | 0.000110296 | 4.48655e-05 | 0.00188752 | 0.00859469 | 0.000203716 | 0.000883263 | 0.00084523 | 0.000735451 | 0.00072575 | 0.00245571 | 0.000185637 |
median_a | 45.563 | 61.6027 | 46.0037 | 37.2562 | 45.2114 | 90.4129 | 51.5631 | 47.9276 | 30.2021 | 43.0159 | 41.3543 | 43.2082 | 45.3029 | 39.0656 | 34.8692 | 38.648 |
median_b | 45.5656 | 61.6027 | 46.0037 | 40.7476 | 45.2114 | 90.4129 | 51.5632 | 47.8979 | 36.6807 | 43.0158 | 41.3726 | 43.2082 | 45.1455 | 39.0412 | 34.8688 | 38.6479 |
median_delta | 0 | 0 | 0 | 0.000619888 | 0 | 0 | 0 | 0 | -0.0044899 | 0 | 0 | 0 | 0 | 0 | -0.000360489 | 0 |
median_diff | 0 | 0 | 0 | 0.00269318 | 0 | 0 | 0 | 0 | 0.00612259 | 0 | 0 | 0 | 0 | 0 | 0.00177383 | 0 |
min_a | 7.52624 | 15.1711 | 12.3553 | 7.64238 | 8.20328 | 11.3489 | 5.8639 | 11.9115 | 8.28849 | 7.74516 | 10.1363 | 8.29676 | 10.1369 | 8.66607 | 7.85827 | 7.48006 |
min_b | -3189.67 | 15.1711 | 12.3553 | 7.59 | 8.20056 | 11.3489 | 5.8639 | 11.9115 | 8.29733 | 7.74516 | 9.51183 | 8.29676 | 9.91587 | 8.66614 | 7.85819 | 7.48006 |
min_delta | -3232.94 | -0.0222778 | -0.0204544 | -0.24143 | -0.273169 | -0.0326271 | -0.0330849 | -0.308235 | -0.298214 | -0.117607 | -0.0980377 | -0.0887527 | -0.0565147 | -0.0570679 | -0.0680695 | -0.0452042 |
mismatch_points_count | 717 | 128615 | 182486 | 7936669 | 2709178 | 408106 | 214960 | 2902936 | 8711320 | 580544 | 3289650 | 2708884 | 2902235 | 2902476 | 1741437 | 967346 |
mismatch_points_fraction | 8.230453e-05 | 0.01476373 | 0.02094759 | 0.9110513 | 0.3109869 | 0.04684654 | 0.02467529 | 0.3332284 | 0.9999736 | 0.06664072 | 0.3776194 | 0.3109532 | 0.3331479 | 0.3331756 | 0.1998998 | 0.1110418 |
num_data_points | 8711550 | 8711550 | 8711550 | 8711550 | 8711550 | 8711550 | 8711550 | 8711550 | 8711550 | 8711550 | 8711550 | 8711550 | 8711550 | 8711550 | 8711550 | 8711550 |
perfect_match_count | 8710833 | 8582935 | 8529064 | 774881 | 6002372 | 8303444 | 8496590 | 5808614 | 230 | 8131006 | 5421900 | 6002666 | 5809315 | 5809074 | 873 | 7744204 |
perfect_match_fraction | 0.9999177 | 0.9852363 | 0.9790524 | 0.2354524 | 0.6890131 | 0.9531535 | 0.9753247 | 0.6819255 | 0.0001110353 | 0.9333593 | 0.6668364 | 0.6890468 | 0.6820078 | 0.6840524 | 0.0005010589 | 0.8889582 |
r-squared correlation | 0.98399 | 1 | 1 | 0.999999 | 0.999999 | 1 | 1 | 0.999999 | 0.999999 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
rms_val | 2.401615 | 0.0002754752 | 0.0003371867 | 0.009954174 | 0.006200183 | 0.0007031779 | 0.0004275732 | 0.005983867 | 0.01363906 | 0.001328299 | 0.002640714 | 0.002669068 | 0.002106088 | 0.002128381 | 0.003741274 | 0.000858054 |
shape | (45, 30, 9, 717) | (45, 30, 9, 717) | (45, 30, 9, 717) | (45, 30, 9, 717) | (45, 30, 9, 717) | (45, 30, 9, 717) | (45, 30, 9, 717) | (45, 30, 9, 717) | (45, 30, 9, 717) | (45, 30, 9, 717) | (45, 30, 9, 717) | (45, 30, 9, 717) | (45, 30, 9, 717) | (45, 30, 9, 717) | (45, 30, 9, 717) | (45, 30, 9, 717) |
spatially_invalid_pts_ignored_a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
spatially_invalid_pts_ignored_b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
std_val | 2.40161 | 0.000275474 | 0.000337185 | 0.00959823 | 0.00619563 | 0.00070316 | 0.000427512 | 0.0059836 | 0.0126351 | 0.00132535 | 0.00263869 | 0.00266849 | 0.0020995 | 0.00211881 | 0.0037227 | 0.000857058 |
std_val_a | 18.8277 | 20.6617 | 14.8977 | 13.784 | 18.888 | 27.0657 | 24.7929 | 18.9274 | 11.5147 | 15.8858 | 13.0027 | 15.6138 | 15.1701 | 14.4666 | 11.8862 | 14.3243 |
std_val_b | 18.9803 | 20.6617 | 14.8977 | 14.9586 | 18.888 | 27.0657 | 24.7929 | 18.8318 | 12.846 | 15.8858 | 13.068 | 15.6138 | 15.1579 | 14.4262 | 11.8861 | 14.3243 |
df.rad_mw[df.rad_mw['max_diff'] > 0.0001].transpose()
2016j004g119 | 2016j004g120 | 2016j028g037 | 2016j028g038 | 2016j028g041 | 2016j028g042 | 2016j028g052 | 2016j028g053 | 2016j028g054 | 2016j010g026 | 2016j010g027 | 2016j010g059 | 2016j010g060 | 2016j017g089 | 2016j017g090 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a_finite_count | 5309550 | 5309550 | 2005830 | 5309550 | 5309550 | 5309550 | 5191560 | 1262493 | 5309550 | 4955580 | 5309550 | 5191560 | 5175828 | 1061910 | 5309550 |
a_finite_fraction | 1 | 1 | 0.3777778 | 1 | 1 | 1 | 0.9777778 | 0.2377778 | 1 | 0.9333333 | 1 | 0.9777778 | 0.9748148 | 0.2 | 1 |
a_missing_count | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
a_missing_fraction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
a_missing_value | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 |
a_nan_count | 0 | 0 | 3303720 | 0 | 0 | 0 | 117990 | 4047057 | 0 | 353970 | 0 | 117990 | 133722 | 4247640 | 0 |
a_nan_fraction | 0 | 0 | 0.6222222 | 0 | 0 | 0 | 0.02222222 | 0.7622222 | 0 | 0.06666667 | 0 | 0.02222222 | 0.02518519 | 0.8 | 0 |
b_finite_count | 5309550 | 5309550 | 5309550 | 5309550 | 5309550 | 5309550 | 5309550 | 5309550 | 5309550 | 5309550 | 5309550 | 5309550 | 5309550 | 1061910 | 5309550 |
b_finite_fraction | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.2 | 1 |
b_missing_count | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
b_missing_fraction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
b_missing_value | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 |
b_nan_count | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4247640 | 0 |
b_nan_fraction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0 |
common_finite_count | 5309550 | 5309550 | 2005830 | 5309550 | 5309550 | 5309550 | 5191560 | 1262493 | 5309550 | 4955580 | 5309550 | 5191560 | 5175828 | 1061910 | 5309550 |
common_finite_fraction | 1 | 1 | 0.3777778 | 1 | 1 | 1 | 0.9777778 | 0.2377778 | 1 | 0.9333333 | 1 | 0.9777778 | 0.9748148 | 0.2 | 1 |
common_missing_count | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
common_missing_fraction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
common_nan_count | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4247640 | 0 |
common_nan_fraction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0 |
correlation | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
diff_outside_epsilon_count | 504301 | 825317 | 1533753 | 1651659 | 497855 | 261932 | 1651590 | 1262442 | 353921 | 1651497 | 1651519 | 1651394 | 1635832 | 1061603 | 589697 |
diff_outside_epsilon_fraction | 0.09497999 | 0.1554401 | 0.7646476 | 0.3110733 | 0.09376595 | 0.04933224 | 0.3181298 | 0.9999596 | 0.06665744 | 0.3332601 | 0.3110469 | 0.3180921 | 0.3160522 | 0.9997109 | 0.1110635 |
epsilon | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
epsilon_percent | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
finite_in_only_one_count | 0 | 0 | 3303720 | 0 | 0 | 0 | 117990 | 4047057 | 0 | 353970 | 0 | 117990 | 133722 | 0 | 0 |
finite_in_only_one_fraction | 0 | 0 | 0.6222222 | 0 | 0 | 0 | 0.02222222 | 0.7622222 | 0 | 0.06666667 | 0 | 0.02222222 | 0.02518519 | 0 | 0 |
max_a | 61.3342 | 52.365 | 24.7826 | 41.0498 | 60.5076 | 60.9204 | 48.9895 | 21.1842 | 38.1551 | 31.885 | 39.3073 | 36.7709 | 36.4703 | 21.8567 | 32.3465 |
max_b | 61.3342 | 52.3656 | 32.4571 | 41.0498 | 60.5076 | 60.9204 | 48.9895 | 25.2821 | 38.1551 | 31.885 | 39.3073 | 36.7709 | 36.4703 | 21.8581 | 32.3465 |
max_delta | 0.00790787 | 0.00744247 | 0.0280352 | 0.0345089 | 0.00356674 | 0.00260544 | 0.0389457 | 0.0377007 | 0.010363 | 0.00994349 | 0.0089969 | 0.00704062 | 0.00688547 | 0.00767064 | 0.00568199 |
max_diff | 0.00790787 | 0.00744247 | 0.0280352 | 0.0345089 | 0.00372696 | 0.00361633 | 0.0389457 | 0.0395795 | 0.0123655 | 0.0120977 | 0.0126288 | 0.00867367 | 0.00872275 | 0.00807571 | 0.00568199 |
mean_a | 10.2496 | 9.12577 | 4.94082 | 6.47687 | 13.4441 | 7.76521 | 6.92283 | 3.94008 | 5.98016 | 5.45137 | 5.91256 | 6.66429 | 5.57568 | 4.83982 | 5.82526 |
mean_b | 10.2496 | 9.12577 | 5.61226 | 6.47701 | 13.4441 | 7.76521 | 6.90659 | 4.878 | 5.98014 | 5.49922 | 5.91256 | 6.6468 | 5.57981 | 4.83977 | 5.82525 |
mean_delta | 7.4449e-06 | -2.41988e-06 | 0.00053806 | 0.000139444 | 5.22066e-06 | -2.52079e-06 | 0.000146378 | -0.000953225 | -2.09322e-05 | 3.45676e-05 | 5.34587e-06 | 3.86483e-05 | -5.28558e-05 | -4.73384e-05 | -6.57078e-06 |
mean_diff | 3.87522e-05 | 5.46452e-05 | 0.00175965 | 0.000755343 | 4.11956e-05 | 1.21278e-05 | 0.000680421 | 0.00310454 | 7.25874e-05 | 0.000319435 | 0.000312292 | 0.000235065 | 0.000243016 | 0.000474216 | 3.74566e-05 |
median_a | 5.39023 | 5.70884 | 3.09512 | 3.86418 | 8.07736 | 4.26774 | 4.32275 | 2.5663 | 3.70098 | 3.58267 | 3.62907 | 4.42054 | 3.62078 | 3.45859 | 3.93761 |
median_b | 5.39022 | 5.70884 | 3.48728 | 3.86431 | 8.07741 | 4.26775 | 4.31774 | 3.22555 | 3.70097 | 3.62002 | 3.62912 | 4.4107 | 3.62477 | 3.45858 | 3.9376 |
median_delta | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -0.000797749 | 0 | 0 | 0 | 0 | 0 | -2.90871e-05 | 0 |
median_diff | 0 | 0 | 0.00101423 | 0 | 0 | 0 | 0 | 0.00231314 | 0 | 0 | 0 | 0 | 0 | 0.000324249 | 0 |
min_a | 0.0955297 | 0.478158 | 0.154194 | 0.172566 | 0.360217 | 0.159565 | 0.372425 | 0.165025 | 0.170142 | 0.231368 | 0.158633 | 0.234396 | 0.146806 | 0.125121 | 0.123862 |
min_b | 0.0955297 | 0.478101 | 0.165184 | 0.190521 | 0.360217 | 0.159565 | 0.372425 | 0.15566 | 0.170142 | 0.228707 | 0.158633 | 0.233119 | 0.151415 | 0.125111 | 0.123862 |
min_delta | -0.00595856 | -0.00614929 | -0.0277494 | -0.0308228 | -0.00372696 | -0.00361633 | -0.034391 | -0.0395795 | -0.0123655 | -0.0120977 | -0.0126288 | -0.00867367 | -0.00872275 | -0.00807571 | -0.00473404 |
mismatch_points_count | 504301 | 825317 | 4837473 | 1651659 | 497855 | 261932 | 1769580 | 5309499 | 353921 | 2005467 | 1651519 | 1769384 | 1769554 | 1061603 | 589697 |
mismatch_points_fraction | 0.09497999 | 0.1554401 | 0.9110891 | 0.3110733 | 0.09376595 | 0.04933224 | 0.3332825 | 0.9999904 | 0.06665744 | 0.3777094 | 0.3110469 | 0.3332456 | 0.3332776 | 0.1999422 | 0.1110635 |
num_data_points | 5309550 | 5309550 | 5309550 | 5309550 | 5309550 | 5309550 | 5309550 | 5309550 | 5309550 | 5309550 | 5309550 | 5309550 | 5309550 | 5309550 | 5309550 |
perfect_match_count | 4805249 | 4484233 | 472077 | 3657891 | 4811695 | 5047618 | 3539970 | 51 | 4955629 | 3304083 | 3658031 | 3540166 | 3539996 | 307 | 4719853 |
perfect_match_fraction | 0.90502 | 0.8445599 | 0.2353524 | 0.6889267 | 0.906234 | 0.9506678 | 0.6818702 | 4.039626e-05 | 0.9333426 | 0.6667399 | 0.6889531 | 0.6819079 | 0.6839478 | 0.0002891017 | 0.8889365 |
r-squared correlation | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.999999 | 1 | 1 | 1 | 0.999999 | 1 | 1 | 1 |
rms_val | 0.0001891915 | 0.000211838 | 0.002864956 | 0.001968659 | 0.0001887693 | 8.175842e-05 | 0.001783236 | 0.004294648 | 0.0003896906 | 0.000776016 | 0.00076885 | 0.000571272 | 0.0005834488 | 0.0007022137 | 0.0001661747 |
shape | (45, 30, 9, 437) | (45, 30, 9, 437) | (45, 30, 9, 437) | (45, 30, 9, 437) | (45, 30, 9, 437) | (45, 30, 9, 437) | (45, 30, 9, 437) | (45, 30, 9, 437) | (45, 30, 9, 437) | (45, 30, 9, 437) | (45, 30, 9, 437) | (45, 30, 9, 437) | (45, 30, 9, 437) | (45, 30, 9, 437) | (45, 30, 9, 437) |
spatially_invalid_pts_ignored_a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
spatially_invalid_pts_ignored_b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
std_val | 0.000189045 | 0.000211824 | 0.00281398 | 0.00196373 | 0.000188697 | 8.17196e-05 | 0.00177722 | 0.00418752 | 0.000389126 | 0.000775246 | 0.000768832 | 0.000569963 | 0.00058105 | 0.000700616 | 0.000166046 |
std_val_a | 10.9977 | 8.60006 | 4.41107 | 6.35029 | 12.9196 | 8.72693 | 6.71854 | 3.51678 | 5.47226 | 4.6068 | 5.40332 | 5.65437 | 4.82373 | 3.74852 | 4.88726 |
std_val_b | 10.9977 | 8.60005 | 5.05222 | 6.35031 | 12.9196 | 8.72693 | 6.68894 | 4.14066 | 5.47226 | 4.63859 | 5.40331 | 5.6361 | 4.81983 | 3.74847 | 4.88726 |
df.rad_sw[df.rad_sw['max_diff'] > 0.00001].transpose()
2016j004g119 | 2016j004g120 | 2016j025g202 | 2016j028g037 | 2016j028g038 | 2016j028g052 | 2016j028g053 | 2016j028g054 | 2016j010g026 | 2016j010g027 | 2016j010g059 | 2016j010g060 | 2016j017g089 | 2016j017g090 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a_finite_count | 1980450 | 1980450 | 1980450 | 748170 | 1980450 | 1936440 | 471559 | 1980450 | 1848420 | 1980450 | 1936440 | 1930572 | 396090 | 1980450 |
a_finite_fraction | 1 | 1 | 1 | 0.3777778 | 1 | 0.9777778 | 0.238107 | 1 | 0.9333333 | 1 | 0.9777778 | 0.9748148 | 0.2 | 1 |
a_missing_count | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
a_missing_fraction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
a_missing_value | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 |
a_nan_count | 0 | 0 | 0 | 1232280 | 0 | 44010 | 1508891 | 0 | 132030 | 0 | 44010 | 49878 | 1584360 | 0 |
a_nan_fraction | 0 | 0 | 0 | 0.6222222 | 0 | 0.02222222 | 0.761893 | 0 | 0.06666667 | 0 | 0.02222222 | 0.02518519 | 0.8 | 0 |
b_finite_count | 1980450 | 1980450 | 1980450 | 1980450 | 1980450 | 1980450 | 1980450 | 1980450 | 1980450 | 1980450 | 1980450 | 1980450 | 396090 | 1980450 |
b_finite_fraction | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.2 | 1 |
b_missing_count | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
b_missing_fraction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
b_missing_value | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 | 9.96921e+36 |
b_nan_count | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1584360 | 0 |
b_nan_fraction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0 |
common_finite_count | 1980450 | 1980450 | 1980450 | 748170 | 1980450 | 1936440 | 471559 | 1980450 | 1848420 | 1980450 | 1936440 | 1930572 | 396090 | 1980450 |
common_finite_fraction | 1 | 1 | 1 | 0.3777778 | 1 | 0.9777778 | 0.238107 | 1 | 0.9333333 | 1 | 0.9777778 | 0.9748148 | 0.2 | 1 |
common_missing_count | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
common_missing_fraction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
common_nan_count | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1584360 | 0 |
common_nan_fraction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0 |
correlation | 1 | 1 | 1 | 0.999996 | 0.999999 | 1 | 0.99998 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
diff_outside_epsilon_count | 107543 | 175973 | 70809 | 572116 | 616124 | 616090 | 471554 | 132024 | 616109 | 616118 | 616090 | 610248 | 396051 | 220012 |
diff_outside_epsilon_fraction | 0.05430231 | 0.08885506 | 0.035754 | 0.7646872 | 0.311103 | 0.318156 | 0.9999894 | 0.06666364 | 0.3333166 | 0.3111 | 0.318156 | 0.316097 | 0.9999015 | 0.1110919 |
epsilon | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
epsilon_percent | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
finite_in_only_one_count | 0 | 0 | 0 | 1232280 | 0 | 44010 | 1508891 | 0 | 132030 | 0 | 44010 | 49878 | 0 | 0 |
finite_in_only_one_fraction | 0 | 0 | 0 | 0.6222222 | 0 | 0.02222222 | 0.761893 | 0 | 0.06666667 | 0 | 0.02222222 | 0.02518519 | 0 | 0 |
max_a | 3.51303 | 2.6383 | 3.30614 | 0.705122 | 1.66522 | 2.29703 | 0.54858 | 1.4558 | 1.07193 | 1.51985 | 1.89978 | 1.33886 | 0.563671 | 1.10456 |
max_b | 3.51303 | 2.63848 | 3.30612 | 1.12611 | 1.66522 | 2.29703 | 0.744842 | 1.4558 | 1.07193 | 1.51985 | 1.89978 | 1.33886 | 0.56363 | 1.10456 |
max_delta | 0.000519991 | 0.000458479 | 0.000315681 | 0.00158426 | 0.00208792 | 0.00193238 | 0.00212775 | 0.000569738 | 0.000490278 | 0.00051403 | 0.000407398 | 0.00030913 | 0.000233173 | 0.000144869 |
max_diff | 0.000557303 | 0.000522196 | 0.000315681 | 0.00173483 | 0.00208792 | 0.00193238 | 0.00223789 | 0.000569738 | 0.000509387 | 0.00051403 | 0.000407398 | 0.00040473 | 0.00025782 | 0.000144869 |
mean_a | 0.560314 | 0.341762 | 0.278872 | 0.100926 | 0.170854 | 0.243837 | 0.0888711 | 0.136731 | 0.119584 | 0.133658 | 0.172129 | 0.116653 | 0.078787 | 0.111377 |
mean_b | 0.560315 | 0.341762 | 0.278872 | 0.118891 | 0.170874 | 0.241952 | 0.109794 | 0.13673 | 0.119631 | 0.133657 | 0.171008 | 0.116767 | 0.0787866 | 0.111377 |
mean_delta | 5.87823e-07 | 3.22659e-07 | -1.44577e-07 | 2.00765e-05 | 2.04525e-05 | 2.37598e-05 | -2.19642e-05 | -4.44853e-07 | -2.54903e-06 | -1.37323e-06 | 2.95425e-06 | -1.09283e-06 | -3.17961e-07 | -1.01463e-07 |
mean_diff | 2.83228e-06 | 2.65236e-06 | 1.76758e-06 | 0.000155227 | 7.87763e-05 | 6.55374e-05 | 0.000311976 | 6.5059e-06 | 3.00498e-05 | 3.01748e-05 | 1.98516e-05 | 2.12983e-05 | 1.77533e-05 | 1.28777e-06 |
median_a | 0.45487 | 0.228614 | 0.115785 | 0.0765986 | 0.103831 | 0.162785 | 0.0752243 | 0.0959955 | 0.0930657 | 0.0918929 | 0.127524 | 0.0824355 | 0.057655 | 0.0749106 |
median_b | 0.454871 | 0.228614 | 0.115785 | 0.0847282 | 0.103851 | 0.161702 | 0.0883191 | 0.0959946 | 0.0928289 | 0.0918914 | 0.1268 | 0.082862 | 0.0576556 | 0.0749109 |
median_delta | 0 | 0 | 0 | 0 | 0 | 0 | -2.45329e-05 | 0 | 0 | 0 | 0 | 0 | -1.22935e-07 | 0 |
median_diff | 0 | 0 | 0 | 9.49502e-05 | 0 | 0 | 0.00024461 | 0 | 0 | 0 | 0 | 0 | 1.17533e-05 | 0 |
min_a | -0.00619526 | 0.0091627 | 0.00862566 | 0.00374 | 0.000262607 | 0.0237659 | 0.00811927 | -0.000492206 | 0.00735278 | 0.00232111 | 0.0134761 | 0.00497359 | 0.00149788 | -0.00209385 |
min_b | -0.00619526 | 0.0091627 | 0.00862566 | 0.0017583 | 0.000262607 | 0.0236012 | 0.00846421 | -0.000492206 | 0.00527232 | 0.00243447 | 0.0106614 | 0.00497359 | 0.00149802 | -0.00209385 |
min_delta | -0.000557303 | -0.000522196 | -0.000285149 | -0.00173483 | -0.00182804 | -0.00111239 | -0.00223789 | -0.000558384 | -0.000509387 | -0.000482712 | -0.000329196 | -0.00040473 | -0.00025782 | -0.000139594 |
mismatch_points_count | 107543 | 175973 | 70809 | 1804396 | 616124 | 660100 | 1980445 | 132024 | 748139 | 616118 | 660100 | 660126 | 396051 | 220012 |
mismatch_points_fraction | 0.05430231 | 0.08885506 | 0.035754 | 0.911104 | 0.311103 | 0.3333081 | 0.9999975 | 0.06666364 | 0.3777621 | 0.3111 | 0.3333081 | 0.3333212 | 0.1999803 | 0.1110919 |
num_data_points | 1980450 | 1980450 | 1980450 | 1980450 | 1980450 | 1980450 | 1980450 | 1980450 | 1980450 | 1980450 | 1980450 | 1980450 | 1980450 | 1980450 |
perfect_match_count | 1872907 | 1804477 | 1909641 | 176054 | 1364326 | 1320350 | 5 | 1848426 | 1232311 | 1364332 | 1320350 | 1320324 | 39 | 1760438 |
perfect_match_fraction | 0.9456977 | 0.9111449 | 0.964246 | 0.2353128 | 0.688897 | 0.681844 | 1.060313e-05 | 0.9333364 | 0.6666834 | 0.6889 | 0.681844 | 0.683903 | 9.846247e-05 | 0.8889081 |
r-squared correlation | 1 | 1 | 1 | 0.999992 | 0.999998 | 0.999999 | 0.99996 | 1 | 0.999999 | 1 | 1 | 1 | 0.999999 | 1 |
rms_val | 1.954852e-05 | 1.511002e-05 | 1.323422e-05 | 0.0002392996 | 0.000193207 | 0.0001627942 | 0.0004080512 | 3.290218e-05 | 6.754574e-05 | 6.844076e-05 | 4.53313e-05 | 4.784354e-05 | 2.590639e-05 | 5.619698e-06 |
shape | (45, 30, 9, 163) | (45, 30, 9, 163) | (45, 30, 9, 163) | (45, 30, 9, 163) | (45, 30, 9, 163) | (45, 30, 9, 163) | (45, 30, 9, 163) | (45, 30, 9, 163) | (45, 30, 9, 163) | (45, 30, 9, 163) | (45, 30, 9, 163) | (45, 30, 9, 163) | (45, 30, 9, 163) | (45, 30, 9, 163) |
spatially_invalid_pts_ignored_a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
spatially_invalid_pts_ignored_b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
std_val | 1.95397e-05 | 1.51065e-05 | 1.32334e-05 | 0.000238456 | 0.000192122 | 0.000161051 | 0.00040746 | 3.28992e-05 | 6.74976e-05 | 6.84272e-05 | 4.52349e-05 | 4.78311e-05 | 2.59044e-05 | 5.61881e-06 |
std_val_a | 0.558456 | 0.326407 | 0.358192 | 0.0874736 | 0.201462 | 0.233709 | 0.0639245 | 0.138548 | 0.0923064 | 0.134306 | 0.145101 | 0.108723 | 0.0659062 | 0.109517 |
std_val_b | 0.558457 | 0.326408 | 0.358192 | 0.114773 | 0.201464 | 0.231992 | 0.0774253 | 0.138547 | 0.0931181 | 0.134306 | 0.144238 | 0.108215 | 0.065906 | 0.109516 |
import netCDF4 as nc4
from glob import glob
afn, = list(glob('A/2016/005/S*g044.L1B*nc'))
gfn, = list(glob('G/2016/005/S*g044.L1B*nc'))
A, G = nc4.Dataset(afn), nc4.Dataset(gfn)
ais = A['instrument_state']
gis = G['instrument_state']
%matplotlib inline
import netCDF4 as nc4
from numpy import *
from pylab import *
def fig(a=20, b=20, **kwargs):
return figure(figsize=(a,b), **kwargs)
/home/rayg/.conda/envs/cris/lib/python2.7/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment. warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.')
np.argwhere(ais[:]!=gis[:])
array([[14, 22, 7]])
A['l1b_qual'][14,22,7], G['l1b_qual'][14,22,7]
(0, 524290)
arad = A['rad_lw']
srad = G['rad_lw']
figure(figsize=(20,20))
plot(arad[14, 22, 7])
plot(srad[14, 22, 7])
legend(('A-SIPS', 'GES-DISC'))
grid()
title('2016j005g044 rad_lw[14,22,7]')
<matplotlib.text.Text at 0x7ffa2001ee10>
# use cksum to verify that download was correct, compared to CRC32 in XML metadata file
# (cris)[fourier:020]: cksum SNDR.SNPP.CRIS.20160120T2148.m06.g219.L1B_NSR.std.v01_08.G.161224201254.nc
# 1640188193 130672735 SNDR.SNPP.CRIS.20160120T2148.m06.g219.L1B_NSR.std.v01_08.G.161224201254.nc