

Calibration of the Scanning High-resolution Interferometer Sounder (S-HIS) Infrared Spectrometer: Overview (Part 1)

Hank Revercomb and Fred Best

University of Wisconsin-Madison, Space Science and Engineering Center

2005 Calcon Workshop Calibration of Airborne Sensor Systems Utah State, 22 August 2005

TOPICS

1. S-HIS Summary

2. <u>S-HIS Radiometric & Spectral</u> <u>Calibration</u>

3. <u>Tests of High Spectral</u> <u>Resolution Calibration</u> (including S-HIS comparison to AIRS)

4. <u>The Promise of CrIS for</u> <u>NPOESS</u>

1. S-HIS Summary

UW Scanning HIS: 1998-Present

(HIS: High-resolution Interferometer Sounder, 1985-1998)

Characteristics

Spectral Coverage: 3-17 microns
Spectral Resolution: 0.5 cm⁻¹
Resolving power: 1000-6000
Footprint Diam: 1.5 km @ 15 km
Cross-Track Scan: Programmable including uplooking zenith view

Applications:

- Radiances for Radiative Transfer
- Temp & Water Vapor Retrievals
- Cloud Radiative Prop.
- Surface Emissivity & T
- Trace Gas Retrievals

S-HIS – Tropospheric Emission Spectrometer (TES) Bands

near 31 Oct overpass SHIS for TES Validation (Bands 2B1, 1B2, 2A1, 1A1), 31 Oct. 2004, 19.273 to 19.298 UTC

Scanning HIS Interferometer: with Telescope, Collection optics, & Detectors/Cooler

Laser metrology located on bottom of optical bench

S-HIS Linear Bearing Based Michelson Drive

Comparison of Tilt Spectra measured during flight form the **old** and **new** Michelson Drive assemblies as measured by the S-HIS laser based dynamic Alignment system. The new drive eliminates significant tilt dynamic amplitude Below 600 Hz. In addition, the overall tilt magnitude is lower by almost a factor 6 with the new drive.

Scanning HIS Detector/Dewar Configuration

S-HIS Split Cycle Stirling Cooler

Allows vibration isolation
Simplifies cooler replacement

Compliant Transfer Tube Allows mechanical decoupling

Compressor ~

Cooler Exander

Detector

Litton cooler with dewar

S-HIS In-Flight Calibration

• Hot and Cold onboard BBs viewed every x-track scan (12 sec).

Ambient BB

Hot BB

Cooling fins closely couple the Cold Blackbody to the Pod Ambient Air Temperature.

Instrument Characteristics

UW Pre-Mission Cal. Verification

SSEC Scanning HIS on 1st ARM-UAV Mission with Proteus, October 2002

Aura Validation Expt AVE, Oct/Nov 2004

NASA WB57

Left Wing Pod

Scanning HIS

S-HIS zenith and cross-track scanning Earth views 11-16-2002 from Proteus @ ~14km

S-HIS Spectra, 4.67 μm CO AVE, 26 October 2004

HNO₃ in S-HIS Zenith views

2. <u>S-HIS Radiometric & Spectral</u> Calibration

Scanning-HIS Radiometric Calibration 3-sigma Error Budget

Scanning-HIS Radiometric Calibration Budget TABB= 260, THBB=310, 11/21/02 ER2

**3-sigma Uncertainties, similar to Best, et al., CALCON 2003 for AERI

Non-linearity Correction

- <u>Physical model</u> is basis for correction needing one key coefficient per band
- <u>Band-to-band overlaps</u> are used to constrain the LW and MW band coefficients
 - SW band detector is highly linear, allowing SW overlap with MW to constrain or test the MW non-linearity
 - MW overlap with LW can then constrain or test the LW non-linearity
- <u>Up-looking constraints</u> also used to refine nonlinearity coefficients and their uncertainties
- ◆ <u>AERI comparisons</u> used for Validation

Example Non-linearity: NAST Aircraft Instrument

Out of band response is a good test of linearity & helps define correction

Photo-voltaic InSb detector demonstrates expected high degree of linearity in SW

Photo-conductive HgCdTe demonstrates expected nonlinearity in MW & LW

Supports expected quadratic non-linearity of PC detectors

Physical Non-linearity Model, General Principle

• HgCdTe detector theory predicts $Q = c_1 \Delta n + c_2 (\Delta n)^2 + c_3 (\Delta n)^3$

where Q is the incident photon flux density and Δn is the photo-generated conduction band electron concentration. (Marion B. Reine, 1979)

- The measured signal, I_m , is proportional to Δn , and the corrected linear signal, I_c , is proportional to Q: $I_c = I_m + a_2(I_m)^2 + a_3(I_m)^3$
- Separating I_m into an AC interferogram, f(x), and a DC offset, V, gives: $I_c = (f + V) + a_2(f + V)^2 + a_3(f + V)^3$

Primary Term-Linear in Spectrum

$$\rightarrow \widetilde{I_c} = (1 + 2a_2V + 3a_3V^2)\widetilde{f} + (a_2 + 3a_3V)\widetilde{f^2} + a_3\widetilde{f^3}$$

$$\rightarrow V = \frac{V_a}{e} + \frac{V_a}{e} \frac{k + 2r_{dw}}{\frac{B_a}{B_i}(t_{fw} + r_{fw} - r_{dw})}$$

a_2 determined from

- Out of Band: $\widetilde{I_c}=0 \rightarrow |a_n|=\widetilde{I_m}/\widetilde{I_m^n}$
- uplooking clear sky comparisons with AERI
- in-flight clear sky comparisons with HIS
- comparisons with external blackbodies

Correction applied before Complex Radiometric Calibration

Scanning-HIS LW/MW and MW/SW Band Overlap 11-16-2002

LW/MW overlap

MW/SW overlap

Spectral Calibration and Standardization

- FTS approach determines the spectral scale for a whole spectral band to within a single multiplicative "scalestretching" factor
- The factor is a function of the reference laser wavelength, and the alignment of the laser & IR beams to the interferometer axis, all of which are very stable, even without thermal control
- Spectral calibration uses well-known regions of calculated atmospheric spectra <u>off-line & infrequently</u>
- Instrument Line Shape is normalized to an ideal sinc function based on known geometry and refinement using atmospheric nitrous oxide lines near 2195 cm⁻¹
- Calibration is followed by procedures to standardize the spectral characteristics

Example Spectral Calibration: S-HIS

Small Spectral Shift (3% of resolution) in AIRS Module-05 identified from S-HIS Validation

Tobin, et al., CALCON 2003, presented S-HIS Spectral Calibration

Self-Apodization is removed to standardize the Instrument Line Shape (ILS)

Self-apodization function is expanded in a Taylor Series to separate OPD and v dependence, allowing rigorous relationships in terms of Fourier transforms

• In expression for the measured interferogram, F(x), expand sinc function as a power series of $(\pi v x b^2/2)$:

 Compute perturbation terms and subtract from measured interferogram.

This process is used for AERI, HIS, S-HIS, NAST-I

Spectral Scale Standardization

- Producing instrument-independent spectra requires interpolation from the specific instrument scale (determined by spectral calibration) to a standardized scale
- AERI, HIS, S-HIS and NAST processing implements this interpolation following the self-apodization correction.

[A densely sampled spectrum, from which linear interpolation can be performed accurately, is constructed by double FFT (FFT calibrated spectrum to interferogram, zero fill to a large effective optical path difference, FFT back to a densely sampled spectrum, and linearly interpolate)]

3. Tests of High Spectral Resolution Calibration

ATMOSPHERIC EMITTED RADIANCE INTERFEROMETER (AERI)

Operational at DOE ARM

Clear Sky and Cloud Downwelling Emission

Accurate High Resolution Radiometry

The NIST Connection

 Comparisons with NIST maintained blackbodies conducted with ground-based AERI. S-HIS employs the same calibration approaches

<u>Max Difference</u> < 0.055°C Longwave < 0.035°C Shortwave between 293 & 333 K

 Direct test of S-HIS planned using NIST Transfer Radiometer (TXR) at aircraft flight temperatures

Intercomparison of 2 Marine AERIs Measuring Sea Surface Temperature

Track of the R/V Roger Revelle 28 Sept. - 14 Oct. 1997

0.020 K **Ten Day Mean Difference:** 0.005 K

CALCON 2003 Radiometric Calibration of AER I

AIRS Validation with UW Scanning HIS 21 November 2002, NASA ER2

8 AIRS FOVs used in the following comparisons (shown in MODIS 12 micron image)

2002 Gulf of Mexico Comparison 8 AIRS FOVs, 448 SHIS FOVs, PC filtering

Detailed Radiance Comparison: Spectrally normalized AIRS-HIS Residuals

Mean over AIRS modules (same color) generally <0.1 K!

Excluding channels strongly affected by atmosphere above ER2

Statistical Properties of AIRS-SHIS Residuals Mean generally < 0.1 K & Standard Deviation < 0.2 K over AIRS modules

New Comparisons from 2004 Field Experiments

EAQUATE:European Aqua Thermal
Experiment (Italy & UK)MPACE:Mixed-Phase Arctic Cloud
ExperimentAVE:Aura Validation Experiment

Only Processed through 0th order comparison

EAQUATE (Italy) 040907- Mountains

EAQUATE (Italy) 040907- Ocean

EAQUATE (Italy) 040909

EAQUATE (UK) 040914

EAQUATE (UK) 040918

AVE Flight 10/31

AVE Flight 11/03

AVE Flight 11/05

AVE Flight 11/12

4. <u>The Promise of CrIS</u> <u>for NPOESS</u>

CrIS, AIRS Successor for NPOESS will be even better

- 1. <u>Radiometric Calibration</u>: < 0.4 K 3-sigma (Design specs: < 0.45%, LW, 0.58% MW, 0.77% SW)
- 2. <u>Spectral Calibration</u>: Instrument Line Shape (ILS) extremely well known and stable from first principles
- 3. <u>Noise</u>:

4x smaller than AIRS in the LW CO₂ region

CrIS Observed and Calculated Instrument Line Shape (ILS)

CO₂ laser source, Center, Edge & Corner Pixels of 3x3 array

 $(\lambda_{laser} = 775.18765 \text{ nm}, \nu_{CO2laser} = 942.383333 \text{ cm}^{-1}, \text{dx}=-0.7\text{mrad}, \text{dy}=0.1 \text{ mrad})$

FTS design expectations confirmed

Observed and Calculated ILSs for Run1, FOVs 5, 4, and 1

 λ_{laser} = 775.18765 nm, ν_{CO2laser} = 942.383333 cm⁻¹, dx=-0.7mrad, dy=0.1 mrad

CrIS ILS Quantitative Verification ∆width (%) for all FOVs

with small overall array shift dx= -0.7mrad, dy= 0.1 mrad

NEN Comparion with AIRS (AIRS, CrIS random, CrIS Spec)

Calibration and Validation of upwelling IR radiance observations are now concerned with tenths of K, not degrees K !

High Spectral Resolution is an important part of the reason (Goody & Haskins, J Climate, 1998)