

Calibration of the Scanning High-resolution Interferometer Sounder (S-HIS) Infrared Spectrometer: Blackbody Reference Standards (Part 2)

Hank Revercomb and Fred Best

University of Wisconsin-Madison, Space Science and Engineering Center

2005 Calcon Workshop Calibration of Airborne Sensor Systems Utah State, 22 August 2005

Topics

- Blackbody system top-level requirements
- System description
- Temperature calibration
- Emissivity
- End-to-end Verifications & Checks
- Future plans

Blackbody System Top-level Requirements

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2)

S-HIS Calibration Equation

- *N* is the calibrated spectral radiance
- B_H is the effective Planck emission for the hot blackbody
- B_A is the effective Planck emission for the ambient blackbody
- $C_{\rm S}$ is the complex spectrum for the sky view
- C_H is the complex spectrum for the hot blackbody view
- C_A is the complex spectrum for the ambient blackbody view
- Re() is the real part of the complex ratio

$\mathbf{B}_{bb} = \varepsilon_{bb}^* \mathbf{B}(\mathbf{T}_{bb}) + (1 - \varepsilon_{bb})^* \mathbf{B}(\mathbf{T}_{rfl}),$

where bb=A or H; and T_{rfl} is reflected structure temperature

THE UNIVERSITY

MADISON

S-HIS Absolute Radiometric Accuracy Requirement ≤0.5K

Calibration of S-HIS; Blackbody Reference Standards (part 2)

MADISON

Top-level Blackbody Requirements

The blackbody system requirements are:

- Temperature knowledge (3 sigma):
- Emissivity:
- Emissivity knowledge:
- Temperature gradient :

 \pm 0.1 K better than 0.998 better than \pm 0.1%

11 cm Dia. X 18 cm

4.06 cm

< 10.0 W

210 to 330 K

knowledge within 0.1 K

S-HIS Instrument imposed requirements and allocations:

- BB Aperture:
- BB Envelope
- BB Operating Temperature:
- Mass (2 BB's and Controller): < 6.0 lb
- Power (2 BB's and Controller):

S-HIS Blackbody Calibration Roadmap

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2)

System Description

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2)

Blackbody Subsystem

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2)

Self-calibrating Thermistor Measurement

Slide 10

MADISON

S-HIS Calibration Blackbodies - HBB

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2)

S-HIS Calibration Blackbodies - ABB

1.6 inch Aperture

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2) THE UNIVERSITY

MADISON

Blackbody Top-level Design Choices

Cavity Approach

- Provides high emissivity (cavity factor near > 39)
- Emissivity enhancement due to cavity is well characterized
- Cavity walls provide good conduction (low gradients)
- Easy to manufacture

Chemglaze Z306 Paint

- Provides high emissivity that is well characterized and stable
- Excellent adhesion
- Provides a hardy surface

• Thermistor Temperature Sensors (YSI 46041 Super-stable Precision Thermistors)

- Very Stable (0.01 K drift after 100 months at 70 K)
- Easy to couple thermally to complicated blackbody cavity geometry
- Reasonably rugged
- Relatively easy to characterize

Blackbody Configuration Similar to AERI (shown)

Cavity Aperture (1.6 inch for S-HIS)

Cavity Support (Thermal Isolator)

Thermistor Installation

The assembly shown is installed inside an enclosure with fiberglass insulation

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2) Slide 14

S-HIS Blackbody Controller

Size: 6" x 14" x 1.75" Weight: <3.0 lb Power: <2.0 W (not inc. BB htr.)

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2)

Varied Blackbody System Operating Environments

- For the S-HIS, the key operational environment parameters are shown in the Table below.
- Accommodating such a wide variety of environments with a single instrument design presents significant challenges.

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2)

Temperature Calibration

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2)

System Reads Thermistor Resistance and Outputs Calibrated Temperature

Resistance Calibration of the Blackbody Controller Electronics

Determining the Constants Needed for Self-calibration

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2)

Thermistor Calibration

Determining the Thermistor Calibration Constants

Blackbody Temperature Uncertainty Budget

Slide 21

MADISON

S-HIS Blackbody Controller Calibration Change Over 6 Year Period

*Calibration Resistors (Rcal) measured using Agilent 7458A DVM, with traceability to NIST

- Calibration results shown are from tests conducted at lab temperatures (20 ° C).
- Original Calibration testing with electronics at -50° C, yielded <1 mK differences from lab temperature tests.

Slide 23

S-HIS Blackbody Calibration Temperatures

S-HIS Blackbody Temperature Calibration-Probe Traceability & Configuration

Insures Excellent Thermal Coupling Between PRT and Blackbody Thermistors

UW SSEC Guildline 9540 PRT is calibrated (with an uncertainty of 30 mK) at the factory using a Rosemont 162CE SPRT Primary Standard Traceable to NIST.

Standard Configuration

Calibration Configuration

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2) Slide 24

End-to-end System Calibration (1)

A minimum of three points (R_i,T_i) are collected and fit to the standard Steinhart and Hart Thermistor relationship:

At each calibration temperature:

- The T_i come from the Calibration Probe
- The R_i come from the Blackbody Controller, using the Self Calibration.

End-to-end System Calibration (2)

Regression fit to points (R_i, T_i) , when more than 3 points are available:

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2)

Thermistor Calibration Change Over 3 Year Period

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2) Slide 27

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2)

S-HIS BB Radiance Model

$$\mathbf{R}(\lambda) = \boldsymbol{\varepsilon}(\lambda) * \mathbf{B}(\mathbf{T}_{\text{EFF}}, \lambda) + (1 - \boldsymbol{\varepsilon}(\lambda)) * \mathbf{B}(\mathbf{T}_{\text{ENV}}, \lambda)$$

where, $B(T, \lambda) = Planck radiance at T and$ $wavelength <math>\lambda$, $\epsilon(\lambda) = cavity isothermal emissivity,$ $T_{EFF} = w_A * T_A + w_B * T_B$ is the effective emitting temperature, and $T_{ENV} = environmental temperature.$

 $\epsilon,$ w_A, and w_B are pre-computed using a numerical model while T_A , T_B , and T_{ENV} are measured in flight.

Emissivity Uncertainty Budget

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2)

Paint Emissivity Measurement

Paint application variation is taken to be < 1% (3 sigma) of the paint emissivity.

*Labsphere does not quote an accuracy for high emissivity samples. Stated value is

conservative By comparison NIST stated accuracy is < 0.004

Blackbody Paint Witness Sample

Witness Sample Holder "Mimics" Blackbody Cone Geometry

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2) Slide 31

Aeroglaze Z306 Diffusity vs. Angle

Paint diffusity for Aeroglaze Z306 estimated from published values (Persky, Rev. Sci. Instrum., 1999).

Isothermal Cavity Emissivity (Aeroglaze Z306)

The Monte Carlo results can be summarized using a "cavity factor" which is a convenient parameterization of the relation between paint and cavity emissivity.

Quadratic Fit of Cavity Factor vs Wavelength

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2) Slide 34

S-HIS Blackbody Cavity Isothermal Emissivity

Paint emissivity (Ep) is the measured S-HIS Blackbody Witness Sample data, and cavity factor (Cf) is the quadratic fit of the Monte Carlo Cf vs Wavelength model results.

End-to-End Verifications & Checks

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2) Slide 37

• Check alignment of on-board and external BBs.

Cold BB Position

Hot BB Position

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2) Slide 38

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2) THE UNIVERSITY

MADISON

LW & MW Nonlinearity Refinement:

- Excellent agreement in Linear SW band (< 0.1 K).
- Used Ice BB data to determine a₂ nonlin coefficient for LW & MW

• A groundbased uplooking comparison was performed between the Scanning-HIS and the UW Atmospheric Emitted Radiance Interferometer (AERI) built for the U.S. DOE ARM program.

• Excellent agreement was obtained showing that S-HIS (on the ground) has an absolute accuracy consistent with the AERI systems.

Uplooking AERI data And Uplooking S-HIS data Show Excellent Agreement!

Consistent With Expected Calibration Reproducibility.

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2)

Observed Tb Agreement Better than 1% over the Range of Atmospheric Conditions Encountered (175 – 290 K)

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2) Slide 44

In-flight Calibration Checks

- Hot and Cold onboard BBs viewed every x-track scan (12 sec).
- LW/MW and MW/SW bands overlap in spectral coverage.
- Uplooking calibrated radiance at altitude should be non-negative.

In-flight Check: Calibrated BB views

- Hot and Cold onboard BBs are viewed about every 12 seconds during the flight.
 The on-board BB views are used in a two point calibration to characterize instrument
- offset and gain changes during the flight.
- Individual on-board blackbody views are calibrated to check calibration reproducibility and to provide a measure of data quality (NESR, mirror tilt, phase).

In-Flight Check: Band Overlap

In-flight Check: View to Cold Scenes

Plans For Comparison With NIST TXR

S-HIS / TXR Side-by-side Comparison Both Viewing AERI Blackbody

Tests will be conducted in a Temperature Chamber at flight temperatures

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2)

S-HIS / TXR Side-by-side Comparison Both Viewing AERI Blackbody

TXR/S-HIS CHAMBER ARRANGEMENT

2005 CALCON Workshop Calibration of S-HIS; Blackbody Reference Standards (part 2) Slide 51

